

Assessment on Potential Impacts of Global Climate Change on Runoff, Soil Erosion and Crop Yields on the Loess Plateau of China

### Fen-li ZHENG Zhi LI Jian-xun WANG

Northwest A & F University, Yangling Shaanxi 712100, China



# Outline

- Background
- Objectives
- Methodology
- Results
- Conclusions



# 1. Background

- Climate change could cause potential impacts on hydrology process, soil erosion and crop yields, which would influence food and ecological safety in the world.
- The Loess Plateau is located in the temperate zone with semi-arid and arid climate, climate changes could cause great impacts on hydrology process, soil erosion, and crop yields.
- However, there is little information on assessing the potential impacts of climate change on runoff, soil erosion, and crop yields.

# 1. Background

- The impacts of climate changes need to be assessed on the Loess Plateau.
- Current evaluated methods: Integration of agricultural or hydrological models with future climate scenarios, GCM is the main source of climate scenarios.
- > When GCMs are used, two major limits exist in the site-specific impacts assessment (i.e., spatial and temporal scale mismatches).



#### Mismatches between GCM and agro-ecological models

### **Spatial and temporal scale of GCM**

Spatial scale: Grid ---Different grids in various GCMs GFDL-R15 (7.5° × 4.4°)--USA CCSR/NIES (5.625° × 5.625°)--Japan CSIRO-Mk2b (5.625° × 3.25°)--Australia CGCM1 & 2 (3.75° × 3.75°)-Canada HadCM2 & 3 (3.75° × 2.5°)--UK GFDL-R30 (3.75° × 2.24°)--USA ECHAM4 & NCAR-PCM (2.8125° × 2.8125)--USA

Model resolution increases, but it does not match needs of agro-ecological model

Increasing resolution

**Temporal scale: Monthly data for most models** 





# 2. Objectives

- Spatially downscale GCM grid output with a statistical approach to target station;
- Temporally downscale GCM monthly output to daily series data;
- Assess the potential impacts of HadCM3 (UK) projected climate changes during 2010-2049 under A2, B2, and GGa on runoff, soil erosion and crop yields on the Loess Plateau.

A2: care more economy, not care environment (high emission scenarios) B2: care more environment (low emission scenarios) GGa: emission rate according to 1860-1990 (current)



3. Methods



# 4. Results

### **Spatially Downscaling**



✓1957~2005: Annual precipitation of measured data and A2 are 576.3 and 497.6 mm, respectively, relative error = -13.7%
✓The Tmax of hindcasts are underestimated (-8.2℃)
✓The Tmin of hindcasts are overpredicted (2.5℃)

# 4. Results

#### **Predicted Climate Change--Precipitation**



Predicted mean annual precipitation under A2, B2 and GGa increases by 10.8, 80.6, and 101.4 mm, respectively (they increases by 1.8%,13.9%, and 17.5%).

They greatly increases in May and in July to September.

# 4. Results

#### **Predicted Climate Change -Temperature**



Month

✓Tmax increases by 0.9, 0.5, and 0.8 °C; Tmin increases by 2.3, 2.1, and 2.0 °C, respectively, under A2, B2 and GGa scenarios.

✓ The increases of Tmin are higher than that of Tmax.

Two peaks of temperature increase: Spring and Winter, which would mean warmer winter in 2010-2049.



#### Monthly change of runoff and soil loss under conventional tillage



Runoff and soil loss increase in May, especially in August to
 October

# Annual change of runoff, soil loss, and crop yield under conventional tillage

|  | Scenario (CO <sub>2</sub> ) |                          | Base       | Base (350) |            | A2 (592) |            | B2 (416)  |            | GGal (445) |  |
|--|-----------------------------|--------------------------|------------|------------|------------|----------|------------|-----------|------------|------------|--|
|  | Slope                       |                          | <b>5</b> ° | 10°        | <b>5</b> ° | 10°      | <b>5</b> ° | 10°       | <b>5</b> ° | 10°        |  |
|  | Runoff                      | Depth/mm                 | 43         | 51         | 93         | 104      | 79         | 89        | 69         | 77         |  |
|  |                             | Change/%                 | 0          | 0          | 117        | 104      | 83         | 74        | 60         | 51         |  |
|  | Soil<br>loss                | Rate/t-ha <sup>-1</sup>  | 3.1        | 9.3        | 8.4        | 21.6     | 6.1        | 16.7      | 4.7        | 12.2       |  |
|  |                             | Change/%                 | 0          | 0          | 171        | 133      | <b>98</b>  | <b>79</b> | 51         | 31         |  |
|  | Wheat                       | Yield/t-ha <sup>-1</sup> | 2.9        | 2.8        | 2.9        | 2.8      | 3.5        | 3.4       | 4.1        | 3.9        |  |
|  |                             | Change/%                 | 0          | 0          | 0          | 0        | 21         | 21        | 41         | 39         |  |
|  | Maize                       | Yield/t-ha <sup>-1</sup> | 7.0        | 6.8        | 8.0        | 7.8      | 8.6        | 8.3       | 9.6        | 9.5        |  |
|  |                             | Change/%                 | 0          | 0          | 14         | 15       | 23         | 22        | 37         | 40         |  |



 Predicted runoff and soil loss under A2 is the most increase, under GGa is the least, and under B2 is intermediate.
 Predicted crop yield under GGa is the most increase; under A2 is not change for wheat and the least increase for maize; and under B2 is intermediate.



# Annual change of runoff, soil loss, and crop yield under conservation tillage

| Scenar  | Scenario (CO <sub>2</sub> ) |     | Base (350) |     | A2 (592) |     | B2 (416) |     | GGal (445) |  |
|---------|-----------------------------|-----|------------|-----|----------|-----|----------|-----|------------|--|
| Slope   |                             | 5°  | 10°        | 5°  | 10°      | 5°  | 10°      | 5°  | 10°        |  |
| Dunoff  | Depth/mm                    | 43  | 51         | 55  | 62       | 44  | 50       | 35  | 41         |  |
| Kulloli | Change/%                    | 0   | 0          | 27  | 21       | 3   | -2       | -18 | -19        |  |
| Soil    | Rate/ t-ha-1                | 3.1 | 9.3        | 1.7 | 5.5      | 1.5 | 4.7      | 1.8 | 5.7        |  |
| loss    | Change/%                    | 0   | 0          | -45 | -41      | -51 | -50      | -41 | -39        |  |
|         | Yield/t-ha <sup>-1</sup>    | 2.9 | 2.8        | 3   | 2.9      | 3.7 | 3.6      | 4.1 | 4          |  |
| Wheat   | Change/%                    | 0   | 0          | 5   | 5        | 28  | 29       | 41  | 42         |  |
|         | Yield/t-ha <sup>-1</sup>    | 7   | 6.8        | 8.1 | 7.9      | 8.1 | 8        | 8.7 | 8.6        |  |
| Maize   | Change/%                    | 0   | 0          | 16  | 16       | 16  | 17       | 25  | 26         |  |



Predicted runoff under A2 is the most increase, under GGa is the most decrease, and under B2 is not change. ✓ Predicted soil loss decreases under A2, B2, and GGa scenarios, there is no differences among three scenarios.  $\checkmark$  Predicted crop yield increase under A2, B2, and GGa scenarios; under GGa is the more increase. Conservation tillage greatly decreases soil loss and increases crop yield, compared with conventional tillage.



# **5.** Conclusions

Climate: Compared with the current climate, at three emission scenarios (A2, B2 and GGa) of HadCM3, precipitation could change from 2.9% to 37%; maximum temperature and minimum temperature might rise 0.6 from 1.6 ℃ and 1.1 to 1.7 ℃, respectively, during 2010 to 2049.

Impacts: Under conventional tillage, WEPP would predict -26% to 115% change for runoff, -31% to 126% change for soil loss, 3% to 17% change for wheat yields, and 7% to 24% change for maize yields during 2010-2049.

Countermeasures: Under conservation tillage, soil loss would decrease by 39% to 51% and crop yield greatly increases,

compared with conventional tillage. .

# **5.** Conclusions

- Due to the uncertainty of climate change, impacts of climate change with GCM are not quantitatively reliable but qualitative reliable to some extent.
- When spatial/temporal transformations are carried out, proper methods should be selected.
- Conservation tillage can reduce the adverse impacts of climate change significantly and have great potential for application.

## Thank you for your attention

### Welcome to visit

#### **College of Resources and Environmental Science**

**Contact information: Fenli Zheng** 

Email: <u>flzh@ms.iswc.ac.cn</u>,

Tel: 0086-29-87013205/87080051